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Diabetic endothelial dysfunction is accompanied by increased oxidative stress and upregulated proinflammatory and inflammatory
mediators in the vasculature. Activation of peroxisome proliferator-activated receptor-alpha (PPAR-«) results in antioxidant and
anti-inflammatory effects. This study was designed to investigate the effect of fenofibrate, a PPAR-« activator, on the endothelial
dysfunction, oxidative stress, and inflammation in streptozotocin diabetic rats. Diabetic rats received fenofibrate (150 mg kg™
day!) for 4 weeks. Fenofibrate treatment restored the impaired endothelium-dependent relaxation and increased basal nitric
oxide availability in diabetic aorta, enhanced erythrocyte/liver superoxide dismutase and catalase levels, ameliorated the abnormal
serum/aortic thiobarbituric acid reactive substances, and prevented the increased aortic myeloperoxidase without a significant
change in serum total cholesterol and triglyceride levels. It did not affect the decreased total homocysteine level and the increased
tumor necrosis factor-a level in the serum of diabetic rats. Fenofibrate-induced prevention of the endothelial function seems to be

related to its potential antioxidant and antiinflammatory activity.

1. Introduction

Diabetes Mellitus (DM) is a common, chronic group of
metabolic diseases which is associated with various vascular,
neuronal, endocrine, and immune alterations at cellular, tis-
sues and organ levels [1]. Macro- and microvascular disease,
are currently accepted to be the most common determinants
of morbidity and mortality in the course of DM [2]. How-
ever, the exact mechanisms of the development of vascular
disease have not been completely elucidated until now.
Endothelial dysfunction and oxidative stress play a
key role in the pathogenesis of diabetic vascular disease
[3]. Under physiological conditions, vascular endothelium
plays an important role in the formation of vascular
smooth muscle tone by releasing relaxant mediators, such
as nitric oxide (NO), endothelium derived hyperpolarizing

factor, endothelium derived contracting factor, and prostacy-
cline [4]. Impairment of endothelium-dependent relaxation
has been demonstrated both in vessels of patients with
insulin-dependent diabetes mellitus [5] and noninsulin-
dependent diabetes mellitus [6]. Although the reason for
this impairment is not entirely clear, some theories have
been postulated. As is known, DM is characterized by
hyperglycemia and hyperlipidemia, two cardinal biochemical
features associated with inhibition of endothelial nitric oxide
synthase (eNOS), leading to diminished NO production
and increased formation of reactive oxygen species (ROS)
in endothelial and vascular smooth muscle cells. Besides,
impaired expression or activity of some antioxidant enzymes
such as superoxide dismutase (SOD) and catalase contributes
to the development of endothelial dysfunction in DM by
increasing oxidative stress [7].


mailto:murat.olukman@ege.edu.tr

Endothelial dysfunction accompanied by upregulated
proinflammatory and inflammatory mediators is thought to
be another contributing factor to the pathogenesis of diabetic
vascular complications. Multiple effects of inflammatory
cytokines like interleukin-1 (IL-1) and tumor necrosis factor-
a (TNF-a«), which lead to prothrombotic and proinflam-
matory changes on the vascular endothelium, have been
outlined in some reports [8]. Recently it has been suggested
that myeloperoxidase (MPO), a “heme” protein derived from
leukocytes, plays an important role in leukocyte-mediated
vascular injury responses in inflammatory vascular diseases
such as diabetic vasculopathy and atherosclerosis [9, 10].

In diabetic patients, hyperhomocysteinemia is an inde-
pendent risk factor for macroangiopathy and mortality
[11]. Many ROS are generated during the auto-oxidation
of homocysteine (Hcy) in diabetic patients. These oxygen-
derived molecules initiate the lipid peroxidation in cell
membranes that are responsible for endothelial injury and
reduction of vascular NO production [12].

Peroxisome proliferator-activated receptor-a (PPAR-«)
is a hormonal activated nuclear receptor which plays an
important role in the course of many vascular diseases such
as DM, hypertension, and coronary heart disease [13, 14].
In recent publications, it has been clearly demonstrated that
activation of PPAR-« leads to an antiinflammatory effect
by reducing plasma concentrations of TNF-a. On the other
hand, it produces an antioxidant effect by reducing plasma
concentrations of malonyldialdehyde, major indicator of
oxidative stress, and by stimulating the expression of SOD,
one of the major molecules of antioxidant defense [15, 16].
In this context fenofibrate (FF), a third generation fibric
acid derivative and a PPAR-a agonist, can be a beneficial
choice for the treatment of diabetic vascular complications
because of its antiinflammatory and antioxidant effects.
Moreover, FF is a useful drug for the treatment of atherogenic
dyslipidemias, producing a substantial decrease in the levels
of triglyceride-rich lipoproteins and an increase in high
density lipoprotein cholesterol levels. In contrast, several
studies show that FF can significantly increase plasma Hcy
levels [17, 18]. However, the underlined mechanisms by
which FF increase total Hcy levels and whether they have any
adverse effects on endothelial function are unknown.

In light of the foregoing data, the primary aim of
this study is to investigate the role of FF on diabetic
endothelial dysfunction, to elucidate its antioxidant and
anti-inflammatory effects, and to evaluate the contribution
of FF-induced hyperhomocysteinemia in diabetic vascular
complications in a rat model of streptozotocin- (STZ-)
induced DM. As far as we know this is the first study in
literature which discusses all these parameters in one single
study protocol.

2. Materials and Methods

2.1. Animals. Male Wistar rats (body weight 200-250g,
10-12 weeks old) were used in this study. The animals

were housed in individual cages at a constant temperature
(22°C) with a fixed 12: 12-h light-dark cycle. This study was
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approved by the Ethics Committee of the School of Medicine,
University of Ege (Approval no: 2004-17).

The animals were randomised to four experimental
groups: untreated control, untreated diabetic, FF-treated
diabetic (150 mg kg™! day~! via oral gavage), and FF-treated
control. Diabetes was induced by a single intraperitoneal
injection of STZ (55mg kg™!). STZ was dissolved in 1ml
cold fresh saline immediately before use. Seven days after
STZ injection, blood glucose levels were determined using an
Accu-Chek Go glucometer (Roche, Turkey). Rats with blood
glucose levels of 250 mg dI~! or above were considered to be
diabetic. Control rats were injected intraperitoneally with 1
ml cold fresh saline. FF treatment was started 6 weeks after
STZ or saline injection, and the treatment continued for 4
weeks.

2.2. Vascular Reactivity Studies. 10 weeks after STZ or saline
injection, rats were killed by the withdrawal of blood via
cardiac puncture under anesthesia. Thoracic aortas were
quickly removed into 4°C Krebs-Henseleit solution and cut
into four 3-4 mm wide rings. In some rings, the endothelium
was quickly removed mechanically by inserting a small
forceps into the lumen and gently rolling. In each experi-
ment, endothelium-intact and endothelium-denuded rings
(two of each) were suspended horizontally under a resting
tension of 2¢g in 20 ml organ chambers containing Krebs-
Henseleit solution of the following composition (mM):
NaCl, 118.30; KCl, 4.70; MgSQOy4, 1.20; KH,POy4, 1.22; CaCl,,
2.50; NaHCOs, 25.00; glucose, 11.10; ph, 7.4; gassed with a
95% O3, 5% CO, mixture and maintained at 37°C. Each
ring was connected to a force displacement transducer for
the measurement of isometric force which was continuously
displayed and recorded online on a personal computer via
an 8-channel transducer data acquisition system (BIOPAC
COMMAT Iletisim Ltd., Ankara, Turkey) using a software
(BIOPAC MP35 COMMAT f{letisim Ltd., Ankara, Turkey)
which also analysed the data.

After 15min of equilibration, each ring was systemat-
ically stretched to the optimum of its length-active ten-
sion relation by exposure to incremental concentrations
of KCl. Rings were then left to equilibrate in the bath
for a total of 30min and washed every 15min. After
the initial equilibration period of 60—90 min, endothelium-
denuded rings were used to assess the contractile responses
elicited by either incremental concentrations of phenyle-
phrine (PE) (0.001-30 uM) or a single concentration of KCI
(120 mM).

Relaxant responses were determined using cumulative
concentrations of acetylcholine (0.001-30 M, ACh), cal-
cium ionophore A23187 (0.001-3 uM, A23187), L-arginine
(0.1-300 uM), or sodium nitroprusside (0.0001-0.3 uM,
SNP) on endothelium-intact rings precontracted with sub-
maximal concentration of phenylephrine. In order to main-
tain appropriate precontractile tension in all preparations,
submaximal concentrations were determined using the prior
cumulative concentration-response curves of PE. Contractile
responses generated by cumulative concentrations of PE
(0.001-30 uM) were also assessed in these rings.
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In endothelium-intact rings, the production of basal NO
was also evaluated by calculating the ratio of additional
contractions induced by a single concentration of NG-
Nitro-L-arginine methyl ester (100 M, L-NAME) to the
precontraction elicited by a single concentration of PE given
at median effective concentration (ECsg).

2.3. Biochemical Measurements. After obtaining heparinized
blood samples by intracardiac puncture, serum was immedi-
ately separated, and erythrocyte hemolyzates were prepared.
For this purpose, the packed erythrocytes were washed two
times with 9 g/L NaClI solution and haemolysed with ice-cold
water (1/5, v/v). Erythrocyte SOD and catalase activities were
determined immediately in hemolyzates. The haemoglobin
values were measured by Drabkin’s method. The erythrocyte
SOD activities were measured based on the inhibition of
autoxidation of epinephrine by SOD at 480 nm, with an
LKB Ultraspec 2 spectrophotometer (LKB Biocrom Ltd,
Cambridge, England). The assay was calibrated by using
purified SOD, and done unit of enzyme was defined as
the amount of enzyme, which inhibits 50% of autoxidation
of epinephrine. The erythrocyte catalase activities were
determined as described by S6zmen et al. [19]. According
to this method, the degradation of hydrogen peroxide is
recorded spectrophotometrically at 240 nm absorbance. One
unit of catalase is defined as the amount of enzyme, which
decomposes 1 pymol hydrogen peroxide/min under specific
conditions.

In addition, aortic and liver tissue samples were homoge-
nized in phosphate buffer (0.5M; pH =7.0), (1/10 w/v). The
homogenate was centrifuged for 5 min at 700 X g at 4°C to
sediment unbroken cells and cellular debris. Determination
of SOD and catalase activities in the supernatants, as
defined above, and the determination of lipid peroxida-
tion were carried out immediately. Lipid peroxidation was
briefly measured by the determination of thiobarbituric
acid reactive substances (TBARSs) which was performed by
the incubation of tissue homogenates in TBARS solution
(0,12 M thiobarbituric acid in 15% trichloroacetic acid and
1% hydrochloric acid mixture) for 30 min at 95°C. TBARS
levels were calculated using 1, 1, 3, 3 tetramethoxypropane
standard curve. All biochemical parameters were normalized
to total protein content of the heamolyzate as measured by
the Lowry method using bovine-serum albumin as standard
[20].

2.4. Measurement of MPO and TNF-a Levels. Tissue MPO
activities were measured according to the modified method
of Grisham et al. [21]. Briefly, following homogenization of
aortic tissue, homogenates were centrifuged at 10000 rpm
for 15 min. Pellets were rehomogenized in 0.5 mM HETAB
(hexadecyltrimethyl ammonium bromide) in phosphate
buffer (50 mM, pH=6.0). Following three freeze and thaw
cycles, samples were centrifuged at 10000 rpm for 10 min.
Supernatants were added to reactive solution containing
0.5M o-dianisidin (in phosphate buffer). After addition
of hydrogen peroxide solution (20 mM), absorbance of
samples was recorded at 492 nm with a microplate reader

for 3 minutes with 15-second intervals. MPO activities were
calculated using a standard curve.

The serum content of TNF-a was determined spec-
trophotometrically according to the instructions of a com-
mercially available ELISA kit (Rat TNF ELISA Kit BD
Biosciences Inc.).

2.5. Measurement of Serum Total Cholesterol and Triglyceride
Levels. Lipid levels were measured in the fasting serum sam-
ples by using ready-made cholesterol kits (Cormary Lot: 304-
1910 A Lublin Poland) and triglyceride kits (Cormary Lot
301-141409 Lublin Poland) on the Hitachi 912 Automatic
Analyzer machine.

2.6. Measurement of Serum Hcy Levels. Blood samples
obtained by cardiac puncture were centrifuged (1000 X g
for 10 min), and serum was separated. Serum total Hcy was
measured by Fluorescence Polarization Immunoassay using
an IMx automatic analyser (Abbott Laboratories, Diagnostic
Division, Abbott Park, IL, USA).

2.7. Drugs. Streptozotocin, acetylcholine, phenylephrine, L-
arginine, calcium ionophore A23187, sodium nitroprusside,
and ;-NAME were obtained from Sigma Chemical Co. (St.
Louis, MO, USA). FF was supplied from Nobel Drug Co.
(Interlab Ltd, Turkey).

2.8. Statistical Analysis. Data were given as mean + SEM.
Concentration response curves were configured with non-
linear regression analysis prior to the evaluation of ECspand
pD, (—log ECsy) via Graphpad Prism 4.0 program. The
contractile response of each aortic ring to phenylephrine
was recorded in milligrams by using BIOPAC Mp35 software
program. Relaxation responses were evaluated as percentage
of phenylephrine precontraction. Repeated measures of one-
way analysis of variance (ANOVA) were performed to
analyze the repetitious concentration response curves, and
when significancy was determined, post hoc analysis was
carried out using Bonferroni test. Nonrepetitious data (Epax,
ECso, Hyc, TC, TG, Blood glucose) were evaluated by using
nonparametric Kruskall-Wallis test. For all results a P value
of < .05 was accepted to be significant.

3. Results

3.1. Metabolic Parameters. Body weight, blood glucose con-
centrations, serum total cholesterol, and triglyceride levels
were presented in Table 1. Induction of diabetes with STZ
resulted in a significant decrease in body weight and a
significant increase in blood glucose levels compared to
control rats. FF treatment affected neither high glucose levels
nor weight loss in diabetic animals. Although diabetes was
associated with significant increases in total cholesterol and
triglyceride levels, FF treatment did not alter serum lipid
levels significantly.
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TaBLE 1: Metabolic parameters for control (C) and diabetic (D) rats treated with/without fenofibrate (FF).
Body Weight (g) Blood glucose (mg/dl) Total cholesterol (mg/dl) Triglyceride (mg/dl)
C 2435+ 7.0 122.7 £ 6.7 50.5 + 2.2 65.9 + 4.3
D 183.8 + 5.9* 359.2 + 24.9* 64.4 + 4.7 119.8 + 9.9*
C+FF 250.5 £ 5.2 117.7 £ 54 63.7 £ 4.0 90.0 £9.2
D+FF 182.6 = 9.6* 378.5 + 42.6* 68.2 + 4.3* 81.7 £ 11.5

Data are expressed as mean = SEM, n = 10, *P < .05 versus C.
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FiGgure 1: Concentration-dependent contraction to phenylephrine (PE) in endothelium-intact [E(+)] (a) and endothelium-denuded [E(—)]
(b) aortic rings and contractions induced by a single concentration of KCI (120 mM) (c) in endothelium-denuded aortic rings. C: control;
D: diabetes mellitus; FF: fenofibrate. *P < .05 versus C; *P < .05 versus D.

3.2. Vascular Functional Studies

3.2.1. Contractile Responses. PE (1nM-10uM) induced
concentration-dependent contractile responses in the
endothelium-intact aortic rings of all rats (Figure 1(a)).
Contractility of PE was significantly increased in diabetic
animals when compared to control group. However, FF
provided a significant decrease in PE contractility in
the diabetic group (Figure1l(a)). In the endothelium-
denuded aortic rings, no significant changes in the PE
contractility were observed between the experimental groups

(Figure 1(b)). In addition, contractile responses to KCl were
similar in all experimental groups (Figure 1(c)).

3.2.2.  Vasorelaxant  Responses. Endothelium-dependent
relaxant response to ACh was significantly impaired in
nontreated diabetic aorta (Figure 2(a)) without a significant
difference in the pD, value (Table 2). FF treatment restored
the impaired relaxations to ACh and increased Ep. in the
diabetic rats (Table 2). Concentration-dependent relaxant
responses to A23187 (Figure 2(b)), L-arginine (Figure 2(c)),
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FIGURE 2: Relaxant responses to acetylcholine (ACh) (a), calcium ionophore A23187 (b), L-arginine (¢) and sodium nitroprusside (SNP) (d)
in the endothelium-intact aortic rings of control (C), and diabetic (D) rats treated with/without fenofibrate (FF). Values are mean + SEM of

data obtained from 10 rats in each group. *P < .05 versus C.

and SNP (Figure 2(d)), as well as pD, and Ep,x values (Table
2), did not show any significant differences between groups.

3.2.3. Effect of L-NAME on Aortic Rings. L-NAME was added
to endothelium-intact aortic rings after precontracting the
rings with the ECso concentration of PE. L-NAME responses
were significantly impaired in the nontreated diabetic group;
however, FF brought in a significant improvement in these
responses (Figure 3).

3.3. Antioxidant and Anti-Inflammatory Parameters. Eryth-
rocyte-SOD and erythrocyte-catalase levels were markedly
lower in the diabetic group than in the control group, and FF
treatment caused a significant increase in these parameters
(Table 3). Although liver-SOD levels were decreased, liver-
catalase levels remained unchanged in the diabetic group. FF
treatment significantly increased liver-SOD levels (Table 3).

In contrast, TBARS values in both erythrocytes and livers
of the diabetic group were significantly higher than in the
control group (Table 1). Although FF significantly lowered
the erythrocyte-TBARS levels, it had no effect on the liver-
TBARS levels. Aorta TBARS level was significantly increased
in the diabetic group, and FF treatment markedly prevented
the increased aortic TBARS level in diabetic group (Table 3).

Serum TNF-a and aortic MPO levels were significantly
higher in the diabetic group than in the control group
(Table 3). FF treatment decreased the high MPO levels in the
diabetic rats without a significant effect on the TNF-« values.

3.4. Homocysteine Levels. Serum total Hcy levels were
markedly decreased in diabetic rats when compared to
control group (Table 3). FF treatment did not affect Hcy
levels in diabetic rats; however, chronic administration of FF
significantly increased Hcy levels in control rats.
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TABLE 2: Epax and pD; values for control and diabetic rats.
Eomax D,
C D D+FF C+FF C D D+FF C+FF
Phenylephrine E(+) 1002 + 57 1449 + 61* 952 + 83* 1038 +103 7.09+0,13 7.10+0,61 6.83+0,81 7.71+0.17
Phenylephrine E(—) 1562 + 244 1432 + 237 1534 + 437 1390 + 711  7.71 £0.51 7.66 £0.33 7.59+0.36 7.85+0.43
Acetylcholine 85.00 + 0.30 67.63 +0.23*  89.08 +0.35" 82.00 +0.35 7.34+0.03 7.26+0.05 7.44+0.04 7.33+0.06
A23187 74.08 = 0.29 68.5 +£0.20 72.88 £0.33 7437 +0.31 6.73+0.09 6.72+0.04 6.37+0.06 6.14 +0.06
L-Arginine 78.21 = 0.20 68.2 +£0.20 74.70 £0.36 84.75+0.95 5.66+0.05 5.73+0.04 598+0.07 579+0.19
Sodium nitroprusside 80.34 +0.22  74.69 + 0.16 71.73 £ 0.36  74.06 +0.74 6.75+0.06 6.80+0.03 6.94+0.06 6.79+0.12

Data are expressed as mean = SEM, n = 10.

Emax is defined as the ratio of phenylephrine precontraction to maximum relaxation of acetylcholine, L-arginine, sodium nitroprusside, and calcium

inonophore A23187.
pDy is defined as —log ECs concentration of drugs.

C: control; DM: diabetes mellitus; FF: fenofibrate; E(+): endothelium-intact aorta; E(—): endothelium-denuded aorta.

*P < .05 versus C, *P < .05 versus DM.
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Ficure 3: Contractile responses to NG-Nitro-L-arginine methyl
ester (L-NAME) (100uM) in the endothelium-intact rings of
control (C), and diabetic (D) rats treated with/without fenofibrate
(FF). Responses were evaluated by calculating the ratio of additional
contractions induced by L-NAME to the precontraction elicited by
phenylephrine given at median effective concentration (ECs). The
contractile responses obtained by L-NAME indicate the production
of nitric oxide as a product of basal endothelial NO synthase
activity. Values are mean + SEM of data obtained from 10 rats in
each group. *P < .05 versus C; *P < .05 versus D.

4. Discussion

Data obtained in the present study reveal that in STZ-
induced diabetic rats, chronic administration of FF improves
endothelium-dependent relaxation and increases basal NO
production in the aorta, enhances the levels of antioxidant
enzymes such as SOD and catalase, ameliorates the abnormal
TBARS levels, and finally, prevents the increased tissue MPO
levels without a significant change in serum levels of total
cholesterol and triglyceride. FF is one of the major drugs
used in the treatment of dyslipidemia, and it has recently
been reported that FF decreases serum levels of cholesterol
and triglyceride in STZ-induced diabetic rats [22] and it
produces a considerable decrease in serum triglyceride levels,

a moderate reduction in LDL cholesterol levels, and a
significant enhancement in HDL cholesterol concentrations
in a model of diabetic dyslipidemia [23]. All these effects of
FF have been attributed to the activation of PPAR-a by FE.
Contrarily, we failed to show any beneficial effect of FF on the
increased total cholesterol and triglyceride levels in diabetic
rats; however FF prevented the diabetes-induced impairment
in the endothelium-dependent relaxation. Although FF
treatment is expected to reduce lipid levels, controversial
studies also exist presenting that FF treatment does not affect
plasma triglyceride and total cholesterol concentrations at
doses up to 300mg kg=! day”! in normoglycemic rats
[24]. Moreover, another fibric acid derivative, bezafibrate,
has been reported to affect none of the increased lipid
levels (namely, total cholesterol, LDL, and triglyceride) in
hyperglycemic rats at 30mg kg™! day~! dose [25]. Our
findings indicate that mechanisms other than the inhibition
of high circulating lipids such as triglycerides and total
cholesterol and the correction of dyslipidemia may involve
in FF-induced restoration of endothelial dysfunction.

It has been reported in various studies that increased
oxidative stress, production of proinflammatory cytokines
such as TNF-« and IL-6, leukocyte-mediated vascular injury
with MPO, and hyperhomocysteinemia can be accepted as
the crucial mechanisms responsible for the pathogenesis and
progression of diabetic tissue damage [26-28]. Reduction
in the acetylcholine-induced endothelium-dependent
relaxation of diabetic rats in the present study is compatible
with the results of several other studies [29-31]. In our
study, induction of diabetes resulted in a marked decrease
in acetylcholine response without a significant change
in the pD, value, indicating that the sensitivity of the
diabetic aortic tissue to acetylcholine was preserved.
Furthermore, endothelium-dependent relaxant responses
to neither calcium ionophore A23187 nor L-arginine were
found to be impaired. Even sodium-nitroprusside-induced
endothelium-independent relaxation was preserved in
diabetic aorta. These findings suggest that the vascular
damage in our animal model is limited to the endothelium
per se; however, the stimulated activation of eNOS seems
not to be impaired nor does the utilization of the precursor
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TaBLE 3: Metabolic data for control and diabetic groups. Data are expressed as mean + SEM of data obtained from 10 rats in each group.
C: control; D: diabetes mellitus; FF: fenofibrate; TBARS: thiobarbituric acid reactive substances; MPO: myeloperoxidase; SOD: superoxide
dismutase; TNF-a: tumor necrosis factor-alpha. * P < .05 versus C; *P < .05 versus DM.

C D D +FF C+FF
Erythrocyte SOD (U/g hemoglobin) 2433 + 152 1592 + 166* 2583 + 316" 2514 + 430
Erythrocyte Catalase (U/g hemoglobin) 5767 + 418 4233 + 196" 5552 + 530* 5045 + 718
Liver SOD (U/mg protein) 10.86 = 1.21 5.34 + 1.17* 9.78 + 0.42° 9.67 = 0.89
Liver Catalase (U/mg protein) 11.95 + 1.09 9.32 +0.42 10.69 = 0.89 11.32 £ 1.24
Erythrocyte TBARS (nmol/g hemoglobin) 536.84 = 14.60 676.09 + 14.67* 548.21 + 46.33" 498.57 = 67.82
Liver TBARS (nmol/mg protein) 16.37 £ 0.50 19.33 = 0.62* 17.97 = 0.88 16.92 + 0.56
Aortic TBARS (nmol/mg protein) 1.029 £ 0.16 1.65 + 0.25* 0.83 = 0.19" 1.01 £0.11
Aortic MPO (U/g protein) 49.22 +2.80 87.36 + 11.81* 13.29 + 1.75%* 15.43 + 3.32%7
Serum TNF-« (pmol/L) 3.44 +0.58 14.66 + 5.43% 16.79 + 4.84* 3.82+0.97
Serum Homocysteine (ymol/L) 9.07 = 0.36 5.48 + 0.34* 4.98 +0.39* 11.02 + 0.61*

L-arginine. In this case, it seems likely that endothelial
dysfunction may be limited to the impairment in the
homeostatic balance maintained by basal NO release. Indeed,
PE contractility in endothelium-intact aorta was enhanced in
diabetic vessels, and rings from diabetic animals responded
to L-NAME with significantly greater tension, indicating a
significant decrease of basal NO release in these vessels.

Enhanced contractility and decreased ACh responses
may be associated with the deficient basal endothelial
activity, besides, increased oxidative stress due to excessive
production of oxygen-free radicals and decreased antioxi-
dant defense systems may also involve in the process [32].
Oxidative degradation of lipids is a well-defined mechanism
of cellular damage caused by excessive production of ROS,
and TBARS is the most widely employed assay used to
determine lipid peroxidation. Today, it is well known that
TBARS level is increased in both plasma and aortic tissue of
experimental diabetic models [33, 34]. In the present study;,
we have demonstrated that enhanced aortic, erythrocyte, and
liver levels of TBARS in diabetic rats accompany the defective
vascular endothelial function. In addition, SOD and catalase
are known to be the most important enzymes in the antioxi-
dant defence system of the body. The major function of SOD
is to catalyze the conversion of superoxide anion radicals to
hydrogen peroxide in order to reduce their toxic effects [34].
On the other hand catalase is responsible for the removal
of intracellular hydrogen peroxide produced by SOD. Some
in vitro studies have shown that ertyhrocyte antioxidant
defences protect endothelial cells against oxidant-induced
damage [35, 36]. In our study, we have observed that diabetic
rats have decreased SOD levels both in the liver tissue and
in the erythrocytes. Similarly, erythrocyte catalase levels were
diminished without a significant change in the liver catalase
levels.

The mechanisms of the beneficial effects of FF on vas-
cular function have not been fully understood yet. However,
direct activation of PPAR-« in the arterial wall, correction
of lipid abnormalities, and increment in the formation,
availability, and action of NO have all been postulated. There
is only one study published so far claiming that FF increases

acetylcholine response in STZ-induced diabetic animals and
reduces oxidative stress [22]. Data obtained in our study also
confirm these vascular effects of FE

We have also questioned the potential inflammatory
mechanisms of diabetic vasculopathy and among them are
the aortic MPO and TNF-a levels. Myeloperoxidase is a
leukocyte-derived heme protein. Recent studies have shown
that MPO plays an important role in endothelial dysfunction
[27]. Plasma MPO levels are shown to be increased both
in type 1 and type 2 diabetic patients [37]. An important
consequence of MPO activity is the consumption of NO and
thereby induction of endothelial dysfunction. The enzyme
MPO can convert NO into nitrating oxidants, which are
potential inflammatory mediators in cardiovascular diseases
[37]. Compatible with up-to-date data, we have showed that
aortic MPO levels are significantly increased in diabetic rats
when compared to the control group. Evidence from recent
studies suggest that TNF-« impairs endothelium-dependent
and NO-mediated vasodilatation in various vascular beds
such as rat thoracic aorta, coronary arteries, and carotid
arteries [38]. The increased TNF-« expression induces the
production of ROS, leading to endothelial dysfunction in
diabetes. Besides TNF-a appears to decrease the bioavail-
ability of NO by diminishing its production and enhancing
its removal. Indeed, serum TNF-« levels in diabetic rats
have been noted to increase in our study. FF treatment
successfully prevented the diabetes-induced increase in aortic
MPO levels; however it failed to affect the increased serum
TNEF-« levels. Controversial reports exist regarding the effect
of FF on TNF-«a levels. For example, Tian-Lun Yang has
reported that FF reduces serum TNF-a levels of rats with
LDL-induced endothelial dysfunction [39]. On the contrary,
Choj has demonstrated that FF does not affect serum TNF-
a levels in OLETF rats [40]. So far to our knowledge,
no scientific reports exist using STZ-induced diabetic rat
model to investigate the potential effects of FF on TNF-«
levels, and we claim that FF has no effect on serum TNF-«
levels.

Despite its favourable effects on diabetic vascular dys-
function, FF treatment may result in elevation of serum



total Hcy, which is known to induce oxidative stress
and endothelial dysfunction [12]. Folate status has been
associated with endothelial dysfunction in adolescents with
type 1 diabetes, and elevated total Hcy is a risk factor for
vascular disease in the nondiabetic population [41]. It is
well known that FF increases total Hcy levels by PPAR-a
mediated mechanism although it dose not affect unbound
Hyc levels in rat serum [13]. In comparison to human
beings, metabolism of Hcy is completely different in rats,
and there is an extensive intrarenal Hcy metabolism in
rats [42]. We have found decreased total Hcy levels in
the serum of diabetic rats. It is probable that excessive
protein loss due to diabetic nephropathy may cause a
decrease in the protein-bound fraction of Hcy and the
free form undergoes excessive metabolism resulting in a
decrease in the total Hcy levels in diabetic rats. Indeed,
our finding confirms to a previous report suggesting that
serum total Hcy levels are found to be decreased in STZ-
induced diabetic rat model [42]. In our study, FF did
not affect serum total Hcy levels in the diabetic group,
whereas it increased total Hcy levels in the control group
probably through PPAR-a mediated mechanism; however
the increase in total Hey levels in FE-treated control rats did
not impair the endothelial function. Therefore, we assume
that fenofibrate-induced hyperhomocysteinemia does not
involve in the pathogenesis of diabetes-induced endothelial
dysfunction.

FF dose in the current study was selected from previous
studies on rats [43]. It should be noted that this dose was
much higher than those clinically used in the treatment of
dyslipidemia (100-250 mg day~!). Additionally, it should be
reminded that this is an ex vivo, but not an in vivo, study
which is performed on the large, but not small, arteries
of STZ-diabetic rats. Therefore, any potential antioxidant
activity of FF requires to be investigated in well-conducted
clinical trials performed on humans. Indeed, in humans,
fibrate therapy has been reported to be associated with
decreased levels of biomarkers of endothelial dysfunction
in a few, but not all, studies presenting some clue on
the preventory effect of fenofibrate in the development of
diabetic microangiopathy [44-48]. Moreover, supplemen-
tation of FF treatment with antioxidants like coenzyme
Q10 has been reported to have favourable vascular effects
in the forearm microcirculation of dyslipidaemic type 2
diabetic patients, due to increase in the bioactivity of
and/or responses to endothelium-derived relaxing factors,
including NO, and this may entail synergistic stimulation of
peroxisome proliferator-activated receptor [49].

In conclusion, treatment with FF produces a significant
improvement in the endothelial dysfunction in STZ-induced
diabetic rats without a significant effect on the serum total
cholesterol and triglyceride levels. This effect of FF seems to
be related to its potential antioxidant activity.
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